

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 12

1) Compare the heat released by the radioactive decays with the heat capacity and the heat flow for 1 km³ of rock 3000 m below the surface.

Heat produced approx. $2 \cdot 10^{-12}$ W/kg, density is approx. 2500 kg/m³
 $P = 5 \cdot 10^{-9}$ W/m³

Heat capacity is approx. 1 kJ·kg⁻¹·K⁻¹, density is approx. 2500 kg·m⁻³, $\Delta T = 100$ K
 $Q = 250'000 \text{ kJ} \cdot \text{m}^{-3} = 69 \text{ kWh} \cdot \text{m}^{-3}$

Heat conductivity approx. $\lambda = 2 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$
 $P = \lambda \cdot V \cdot A^{-1} \cdot \Delta T = 2 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1} \cdot 1 \text{ km}^3 \cdot (1 \text{ km}^2)^{-1} \cdot 100 \text{ K} = 200 \text{ W}$

2) Calculate the volume necessary in order to cover the energy demand of a person with geothermal heat.

Energy demand per capita is approx. 5 kW
 $V = 5000 \text{ W} / 5 \cdot 10^{-9} \text{ W/m}^3 = 10^{12} \text{ m}^3 = 1000 \text{ km}^3$
Therefore, the location for geothermal heat extraction has to be selected carefully.

3) Calculate the primary energy use per capita in Iceland and compare with Switzerland. .

260 PJ/year
300'000 people in Iceland
 $260 \cdot 10^{15} \text{ Ws/year}$
27.4 kW/capita in Iceland, 5 kW/capita in Switzerland

4) Calculate the kinetic energy in the system moon-earth and compare with the global energy demand.

$m_{\text{moon}} = 7.34767309 \cdot 10^{22}$ kg, distance(earth-moon) = 384400 km, the moon goes around the earth in 27.3 days.

$W = 1/2 \cdot m \cdot v^2 = 0.5 \cdot 7.34767309 \cdot 10^{22} \text{ kg} \cdot (384.4 \cdot 10^6 \text{ m} \cdot 4 \cdot \pi)^2 = 8.572 \cdot 10^{41} \text{ J} = 2.38 \cdot 10^{35} \text{ kWh}$
Global energy demand: $18 \text{ TW} \cdot 365 \text{ d/a} \cdot 24 \text{ h/d} = 1.576 \cdot 10^{14} \text{ kWh} \cdot \text{a}^{-1}$

The kinetic energy of the moon covers the world energy demand for approx. 10^{21} years.

5) How much is the amount of biomass production increased, if the light intensity and the CO₂ concentration is optimized.

$18 \cdot 24 \cdot 365 \text{ TWh/year} / 100 \text{ kWh/m}^2/\text{year} = 1.6 \cdot 10^{12} \text{ m}^2 = 1.6 \cdot 10^6 \text{ km}^2$

We are approximately now at around 0.04 vol% CO₂. Then if you optimize the lux as well as the concentration you reach a plato as shown on Slide 51.